

A selective synthesis for novel pyranodipyrimidines

Mazaahir Kidwai*, Ritu Goyal & Kavita Singhal

Green Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India

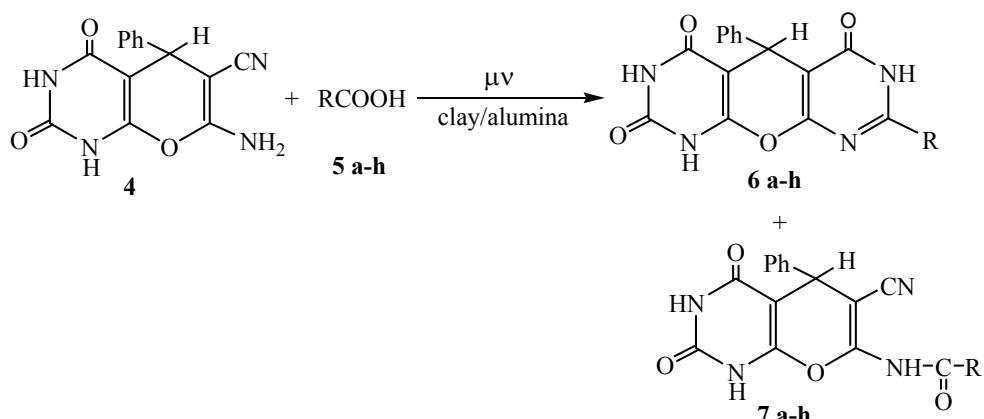
E-mail: kidwai.chemistry@gmail.com

Received 16 October 2006; accepted (revised) 26 February 2007

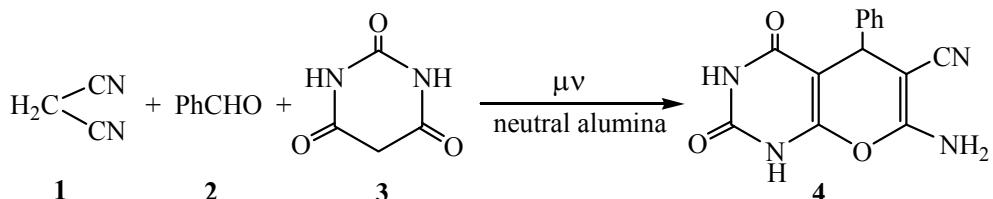
An environmentally benign approach to the selective synthesis of novel compounds 5,8-diaryl-5,7-dihydro-1*H*-pyrano[2,3-*d*:6,5-*d*']dipyrimidine-2,4,6-triones under microwave irradiation (MWI) using inorganic solid supports is described. The reaction time decreases from hours to minutes along with yield enhancement. In addition, catalytic role of various inorganic supports is studied, and acidic alumina is found to be the best in terms of selectivity.

Keywords: Pyranodipyrimidines, barbituric acid, microwave, solid support, montmorillonite K-10 clay, acidic alumina

Synthetic studies of fused pyrimidines have been documented extensively because of their structural diversity and association with a wide spectrum of biological activities¹⁻⁵. Barbituric acids and its thio analogues have been employed as convenient starting materials for the preparation of wide variety of fused pyrimidines such as pyranopyrimidines^{6,7}, pyranodipyrimidines⁸, pyridopyrimidines⁹, pyrazolo and isoxazolopyrimidines¹⁰ and pyrimidotriazepines¹¹.


Among these, pyranodipyrimidines are the least investigated compounds and only few syntheses are found to be reported in literature¹². This tricyclic system plays an important role in various biological activities such as HIV-I integrase inhibitor¹³, antibacterial, immunomodulating, antitumor¹⁴ and also used as antiretroviral drug¹⁵. Besides the usefulness of pyranodipyrimidines, the *N*-alkylated product showed enhanced bioactivity due to the increase in solubility in common organic solvents¹⁶ that is indicative of the high lipophilicity which facilitates membrane transport and strengthens functional activity. Protocol followed by this group also shows an *N*-alkylated pyranopyrimidine **7** as a byproduct, although present in smaller quantities but possessing various biological activities¹⁷⁻²¹, therefore, important enough to be characterized after isolation. Pyranodipyrimidines are good precursors for further development into new drugs and to be included in future combination regimens.

MW assisted synthesis of heterocycles has attracted immense attention due to simplicity, enhanced reaction rate²², formation of pure products and high yields with ease of manipulation²³.


In view of the above mentioned biological activities of pyranodipyrimidines and in continuation of the interest in the development of environmentally benign synthesis, herein is reported a selective, novel and facile synthesis of pyranodipyrimidines on various solid supports. Conventional synthesis is also reported for comparison.

Results and Discussion

Pyranodipyrimidines **6a-h** were prepared by the reaction of 7-amino-6-cyano-5-aryl-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4(1*H*, 3*H*)-diones (intermediate **4** with different aromatic carboxylic acids, **5a-h** (**Scheme I**). The intermediate in turn was synthesized by MWI using neutral alumina as solid support (**Scheme II**). To synthesize title compound, intermediate **4** and different aromatic carboxylic acids **5a-h** were adsorbed on clay/alumina and subjected to MWI. Initially, the ditopic property²⁴ of montmorillonite K-10 clay viz. various catalytic sites with diversities was explored. Using montmorillonite K-10 clay, two products **6** and **7** were obtained as monitored by TLC. Moreover, to explore the acidic property of the solid support the same protocol was followed using another solid support *i.e.* acidic alumina and surprisingly, only one product was obtained in sufficient quantity *i.e.*, upto 55-65% (**Table I**). This highlighted the selectivity of a particular support for the reaction. Further, for comparative studies, conventional synthesis was also tried using dilute hydrochloric acid as acidic medium, but it again led to two products **6** and **7** with longer reaction times and poor yields (**Table I**). So, neither

Scheme I

Scheme II

selectivity nor good yields could be achieved conventionally. Thus, in comparison to the conventional method, solid supported reactions with MWI gave better results in terms of selectivity, duration of reaction and yield. The reaction catalyzed by acidic alumina as solid support was found to be the most suitable in terms of selectivity.

The structures of the compounds **6** and **7** were established on the basis of elemental analysis and spectral data. The disappearance of absorption band at 2210 cm^{-1} in IR spectra due to $-\text{C}\equiv\text{N}$ stretching frequency in **6** confirms the ring formation which is formed by the condensation of **4** with different aromatic carboxylic acids **5a-g**. Further, the disappearance of the doublet at $3200\text{-}3250\text{ cm}^{-1}$ due to NH_2 in products **6** and **7** confirms the proposed structure. Distinction between **6** and **7** is made on the basis of polarity difference between the two, as monitored by TLC. Absorption band at 2200 cm^{-1} due to $\text{C}\equiv\text{N}$ still present in IR spectra of **7** supports the N -alkylated product eliminating the possibility of the cyclized compound. In addition, the molecular formulae of the two products are the same as seen by CHN analysis.

Experimental Section

Melting points were taken on a Thomas Hoover melting point apparatus and are uncorrected. IR

(Nujol) were recorded on a Perkin-Elmer FTIR-1710 spectrometer and ^1H NMR were recorded on a Bruker Avance Spectrospin 300 (300 MHz) instrument using TMS as internal standard. Elemental analysis was performed on a Heraeus CHN rapid analyser. Mass spectra were recorded on KC455 Waters TOF-MS. The homogeneity of compounds were determined on aluminium foil backed silica gel plates (Merck). A Kenstar microwave oven, Model OM 9925E (2450 MHz, 800 W) was used for MWI.

General procedure for the synthesis of 5, 8-Diaryl-5, 9-dihydro-1*H*-pyrano[2, 5-*d*:6, 5-*d'*]-dipyrimidine-2, 4, 6-trione

Method A (microwave synthesis)

Synthesis of 7-Amino-6-cyano-5-aryl-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4(1*H*, 3*H*)-diones **4** (intermediate)

To the ethanolic solution of malononitrile (1 mmol) **1**, benzaldehyde (1 mmol) **2**, and barbituric acid (1 mmol) **3**, 20 g of neutral alumina²⁵ was added. The reaction mixture was stirred well for best adsorption and dried in air. The beaker containing reaction mixture was placed in an alumina bath²⁶ and subjected to MWI for the time interval of 30 s. Upon completion of reaction (progress monitored by TLC), the reaction mixture was cooled and product extracted using $2\times 10\text{ mL}$ DMF.

Table I — Comparison of reaction time and yields for the compounds **6a-h** and **7a-h**

Compd	R	Method A				Method B		
		A ₁		A ₂		Time (hr)	Yield (%)	
		Time (min)	Yield (%)	6	7			
6a/7a	—C ₆ H ₅	5	60	4	63 28	8	40 20	
6b/7b	2-CH ₃ COOC ₆ H ₅	4.5	55	4.5	65 25	7.5	42 23	
6c/7c	2-ClC ₆ H ₄	5	57	4.5	62 28	8	41 25	
6d/7d	3-ClC ₆ H ₄	5	60	5	63 26	7	45 22	
6e/7e	4-ClC ₆ H ₄	4.5	62	4	65 22	7.3	40 21	
6f/7f	3-NO ₂ C ₆ H ₄	5	64	4.5	70 20	6.5	35 20	
6g/7g	—CH ₂ C ₆ H ₅	4.2	58	5	69 25	7.5	46 20	
6h/7h	4-MeOC ₆ H ₄	4.5	65	4.5	65 26	8.5	48 22	

A₁: Acidic aluminaA₂: Montmorillonite K10 clay

Synthesis of 5, 8-Diaryl-5, 9-dihydro-1*H*-pyrano[2, 5-*d*:6, 5-*d'*]dipyrimidine-2, 4, 6-trione

Method A₁

Acidic alumina²⁷ was added to the intermediate **4** (1 mmol) and aromatic carboxylic acids **5a-h** (1 mmol) dissolved in DMF at RT. The reaction mixture was thoroughly mixed and dried in air. It was then placed in alumina bath and subjected to MWI. After each interval of 30 s, the progress of reaction was monitored using TLC. Upon completion of the reaction, the product **6a-h** was extracted using 3×10 mL chloroform and purified by recrystallization from ethanol.

Method A₂

The procedure is analogous to method A₁, using montmorillonite K-10 clay²⁸ as solid support in place of acidic alumina. The progress of reaction was monitored using TLC at intervals of 30 s. After completion of reaction, the mixture of two products **6a-h** and **7a-h** were extracted using chloroform. The two products were separated using column chromatography over column of silica gel (60-120 mesh); preadsorption of crude product on silica gel; elution with benzene/ethylacetate = 90:10 v/v.

Method B (Conventional Procedure)

To the ethanolic solution of different aromatic carboxylic acids **5a-h** (1 mmol), intermediate **4** dissolved in minimum amount of DMF was added. It was acidified with dil. HCl (~ 1 mL). The resulting reaction mixture was then stirred under reflux. Progress of reaction was monitored by TLC. After completion of reaction, the reaction mixture was

cooled and the solvent was evaporated *in vacuo*. The crude product thus isolated was washed with water and dried. The mixture of two products was separated using preparative TLC plates (chloroform as eluent). The products were purified by recrystallization from ethanol.

5,8-Diphenyl-5,7-dihydro-1*H*-pyrano[2,3-*d*]:

6,5-*d'*]dipyrimidine-2,4,6-trione, 6a. m.p. 102-04°C; IR(Nujol): 1720, 1591, 1568, 1451, 1376, 3320, 3250 cm⁻¹; ¹H NMR (CDCl₃): δ 11.32 (1H, brs, NH), 10.79 (1H, brs, NH), 8.42 (1H, brs, NH), 7.06-7.6 (10H, m, ArH), 4.13 (1H, s, CH). Anal. Calcd. for C₂₁N₄H₁₄O₄: C, 65.25; H, 3.62; N, 14.50. Found C, 65.05; H, 3.14; N, 14.78%. EI-MS: *m/z* 386.10.

5-Phenyl-8(*o*-acetoxyphenyl)-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d'*]dipyrimidine-2, 4, 6-trione, 6b. m.p. 120-22°C; IR(Nujol): 3335, 3260, 1719, 1568, 1591, 1450 cm⁻¹; ¹H NMR (CDCl₃): δ 11.22 (1H, brs, NH), 10.62 (1H, brs, NH), 8.64 (1H, brs, NH), 7.2-7.8 (9H, m, ArH), 4.24 (1H, s, CH), 2.3 (3H, s, CH). Anal. Calcd. for C₂₃N₄H₁₆O₆: C, 62.16; H, 3.60; N, 12.61. Found C, 61.12; H, 3.42; N, 12.53%. EI-MS: *m/z* 444.10.

5-Phenyl-8(*o*-chlorophenyl)-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d'*]dipyrimidine-2, 4, 6-trione, 6c. m.p. 140-42°C; IR(Nujol): 3482, 1761, 1560, 1720, 3380 cm⁻¹; ¹H NMR (CDCl₃): δ 11.24 (1H, brs, NH), 10.89 (1H, brs, NH), 8.68 (1H, brs, NH), 7.12-7.92 (9H, m, ArH), 4.41 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃N₄O₄Cl: C, 59.92; H, 3.09; N, 13.31. Found C, 60.12; H, 2.92; N, 13.72%. EI-MS: *m/z* 420.06.

5-Phenyl-8(*m*-chlorophenyl)-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d'*]dipyrimidine-2, 4, 6-trione, 6d. m.p. 118-20°C; IR(Nujol): 3343, 1619, 1529, 1393,

1448 cm⁻¹; ¹H NMR (CDCl₃): δ 11.32 (1H, brs, NH), 10.72 (1H, brs, NH), 8.72 (1H, brs, NH), 7.2-8.1 (9H, m, ArH), 4.42 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃N₄O₄Cl: C, 59.92; H, 3.09; N, 13.31. Found C, 59.46; H, 3.12; N, 13.46%. EI-MS: *m/z* 420.06.

5-Phenyl-8(*p*-chlorophenyl)-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d*']dipyrimidine-2, 4, 6-trione, 6e. m.p. 98-100°C; IR(Nujol): 3320, 3543, 1721, 1667, 1531 cm⁻¹; ¹H NMR (CDCl₃): δ 11.31 (1H, brs, NH), 10.74 (1H, brs, NH), 8.42 (1H, brs, NH), 7.2-7.9 (9H, m, ArH), 4.48 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃N₄O₄Cl: C, 59.92; H, 3.04; N, 13.31. Found C, 59.82; H, 3.22; N, 13.09%. EI-MS: *m/z* 420.06.

5-Phenyl-8(*m*-nitrophenyl)-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d*']dipyrimidine-2, 4, 6-trione, 6f. m.p. 190-92°C; IR(Nujol): 3343, 1619, 1529, 1393, 1448 cm⁻¹; ¹H NMR (CDCl₃): δ 11.34 (1H, brs, NH), 10.72 (1H, brs, NH), 8.72 (1H, brs, NH), 7.2-7.83 (9H, m, ArH), 4.19 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃N₅O₆: C, 58.46; H, 3.01; N, 16.24. Found C, 58.91; H, 3.51; N, 16.02%. EI-MS: *m/z* 430.09.

5-Phenyl-8(*p*-methoxyphenyl)-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d*']dipyrimidine-2, 4, 6-trione, 6h. m.p. 210-12°C; IR(Nujol): 3393, 3458, 1725, 1820, 1421 cm⁻¹; ¹H NMR (CDCl₃): δ 11.53 (1H, brs, NH), 10.26 (1H, brs, NH), 8.42 (1H, brs, NH), 7.15-7.62 (9H, m, ArH), 4.23 (1H, s, CH), 3.56 (3H, s, CH). Anal. Calcd. for C₂₂H₁₆N₄O₅: C, 63.46; H, 3.84; N, 13.46. Found C, 63.63; H, 3.91; N, 13.42%. EI-MS: *m/z* 416.11.

5-Phenyl-8-benzyl-5, 7-dihydro-1*H*-pyrano[2, 3-*d*:6, 5-*d*']dipyrimidine-2, 4, 6-trione, 6g. m.p. 160-62°C; IR(Nujol): 3583, 3198, 3031, 1811, 1720, 1496 cm⁻¹; ¹H NMR (CDCl₃): δ 11.63 (1H, brs, NH), 10.49 (1H, brs, NH), 8.51 (1H, brs, NH), 7.1-7.66 (10H, m, ArH), 4.34 (1H, s, CH), 2.26 (2H, s, CH). Anal. Calcd. for C₂₂H₁₆N₄O₄: C, 66.0; H, 4.0; N, 14.0. Found C, 65.48; H, 4.10; N, 14.23%. EI-MS: *m/z* 400.12.

6-Cyano-5-phenyl-7-(benzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7a. m.p. 80-82°C; IR(Nujol): 3397, 3166, 2120, 1694, 1596, 1572 cm⁻¹; ¹H NMR (CDCl₃): δ 11.31 (1H, brs, NH), 10.62 (1H, brs, NH), 8.65 (1H, brs, NH), 7.1-7.8 (10H, m, ArH), 4.22 (1H, s, CH). Anal. Calcd. for C₂₁H₁₄O₄N₄: C, 65.28; H, 3.62; N, 14.50. Found C, 65.92; H, 3.83; N, 14.23%. EI-MS: *m/z* 386.10.

6-Cyano-5-phenyl-7-(2'-acetoxybenzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7b. m.p. 76-78°C; IR(Nujol): 3443, 3329,

3242, 2160, 1742, 1642 cm⁻¹; ¹H NMR (CDCl₃): δ 11.22 (1H, brs, NH), 10.52 (1H, brs, NH), 8.46 (1H, brs, NH), 6.9-7.3 (9H, m, ArH), 4.25 (1H, s, CH), 2.91 (3H, s, CH). Anal. Calcd. for C₂₃H₁₆O₆N₄: C, 62.16; H, 3.60; N, 12.61. Found C, 62.02; H, 3.48; N, 12.05%. EI-MS: *m/z* 444.19.

6-Cyano-5-phenyl-7-(2'-chlorobenzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7c. m.p. 120-22°C; IR(Nujol): 3353, 3254, 3295, 3411, 2161, 1722 cm⁻¹; ¹H NMR (CDCl₃): δ 11.26 (1H, brs, NH), 10.62 (1H, brs, NH), 8.41 (1H, brs, NH), 6.9-7.6 (9H, m, ArH), 4.12 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃O₄N₄Cl: C, 59.92; H, 3.09; N, 13.31. Found C, 59.48; H, 2.83; N, 13.64%. EI-MS: *m/z* 420.06.

6-Cyano-5-phenyl-7-(3'-chlorobenzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7d. m.p. 90-92°C; IR(Nujol): 3354, 3249, 2361, 1696, 1597, 1575 cm⁻¹; ¹H NMR (CDCl₃): δ 11.41 (1H, brs, NH), 10.51 (1H, brs, NH), 8.62 (1H, brs, NH), 6.8-7.6 (9H, m, ArH), 4.23 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃O₄N₄Cl: C, 59.92; H, 3.09; N, 13.31. Found C, 59.13; H, 3.22; N, 13.72%. EI-MS: *m/z* 420.06.

6-Cyano-5-phenyl-7-(4'-chlorobenzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7e. m.p. 88-90°C; IR(Nujol): 3402, 3349, 3292, 2159, 1769, 1660 cm⁻¹; ¹H NMR (CDCl₃): δ 11.39 (1H, brs, NH), 10.65 (1H, brs, NH), 8.52 (1H, brs, NH), 7.2-7.8 (9H, m, ArH), 4.15 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃O₄N₄Cl: C, 59.92; H, 3.19; N, 13.31. Found C, 60.15; H, 3.19; N, 13.62%. EI-MS: *m/z* 420.06.

6-Cyano-5-phenyl-7-(3'-nitrobenzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7f. m.p. 76-78°C; IR(Nujol): 3343, 3210, 3439, 2112, 1619, 1529 cm⁻¹; ¹H NMR (CDCl₃): δ 11.26 (1H, brs, NH), 10.42 (1H, brs, NH), 8.51 (1H, brs, NH), 7.2-8.1 (9H, m, ArH), 4.19 (1H, s, CH). Anal. Calcd. for C₂₁H₁₃O₆N₅: C, 58.46; H, 3.01; N, 16.24. Found C, 57.92; H, 2.99; N, 16.45%. EI-MS: *m/z* 430.09.

6-Cyano-5-phenyl-7-(4'-methoxybenzoylamino)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione, 7g. m.p. 88-90°C; IR(Nujol): 3489, 3393, 3210, 1750, 1690, 1520, 2310; ¹H NMR (CDCl₃): δ 11.12 (1H, brs, NH), 10.31 (1H, brs, NH), 8.49 (1H, brs, NH), 7.25-8.12 (9H, m, ArH), 4.16 (1H, s, CH), 3.56 (3H, s, CH). Anal. Calcd. for C₂₂H₁₆O₅O₄: C, 63.46; H, 3.84; N, 73.40. Found C, 63.89; H, 3.42; N, 13.06%. EI-MS: *m/z* 400.12.

6-Cyano-5-phenyl-7-(benzylamido)-1, 3, 5-trihydro-5*H*-pyrano[2, 3-*d*]pyrimidine-2, 4-dione,

7h. m.p. 116-18°C; IR(Nujol): 3583, 3198, 3031, 2117, 181, 1720, 1696 cm⁻¹; ¹H NMR (CDCl₃): δ 11.34 (1H, brs, NH), 10.62 (1H, brs, NH), 8.43 (1H, brs, NH), 6.82-7.51 (10H, m, ArH), 4.25 (1H, s, CH), 2.31 (2H, s, CH). Anal. Calcd. for C₂₂H₁₆O₄N₄: C, 6.0; H, 4.0; N, 14.0. Found C, 65.50; H, 4.23; N, 17.10%. EI-MS: *m/z* 416.11.

Conclusion

In conclusion, the proposed methodology provides an easy, practical, convenient, environmentally benign and selective one pot synthesis of pyranodipyrimidines. The procedure clearly highlights the selectivity of the acidic alumina solid support when compared with montmorillonite K-10 clay.

Acknowledgement

One of the authors Kavita Singhal acknowledges the financial assistance from the Council of Scientific & Industrial Research (CSIR), New Delhi.

References

- 1 Xie W, Jin Y & Wang P G, *Chemtech*, 29, **1999**, 23.
- 2 Varma R S, *Green Chem*, 1, **1999**, 43.
- 3 Kidwai M, Venkataraman R, Garg R K & Bhushan K R, *J Chem Res (S)*, **2000**, 586.
- 4 Walker H A, Wilson S, Atkins E C, Garrett H E & Richardson A R, *J Pharmacol Exp Therm*, 101, **1951**, 368.
- 5 Hardtmann G E & Kathawala F G, *US Patent* 4, 053, 600, **1977**; *Chem Abstr*, 88, **1978**, 22970.
- 6 Ahluwalia V K, Sharma R & Sharma M K, *Indian J Chem*, 31B, **1992**, 688.
- 7 (a) Ahluwalia V K, Sharma H R & Tyagi R, *Tetrahedron*, 42(14), **1986**, 4045.
(b) Bailey J & Elvidge J A, *J Chem Soc Perkin I*, **1973**, 823.
- 8 Hezeqvel H & Willcox T J, *Chemistry and Industry* (London, United Kingdom), 2, **1980**, 82.
- 9 Homer C & Scarboroy, *J Org Chem*, 29(1), **1964**, 219.
- 10 Das P K, Behera G B, Sahay A K & Mishra B K, *Indian J Chem*, 24B, **1985**, 437.
- 11 Kidwai M, Singhal K & Thakur R, *Lett Org Chem*, 2(5), **2005**, 419.
- 12 Moskvin A V, Meshcheryakov M P, Reznikova N R, Kozimina A G & Ivin B A, *Russian J of Gen Chem*, 70(5), **2000**, 821.
- 13 (a) Panne C C, Pluymers W, Van M B, Tetz V, Cherepanov P, De Clercq E & Witvrouw M, *Current Biology*, 12(14), **2002**, 1169.
(b) Fikkert V, Hombrouck A, Remoortel B V, Maeyer M D, Pannecouque C, Clercq E D, Debyser Z & Witvrouw M, *AIDS*, 18, **2004**, 2019; Witvrouw M, Made B V, Vercammen J, Hantson A, Engelborghs Y, Clercq E D, Pannecouque C & Debyser Z, *Current Drug Metabolism*, 5(4), **2004**, 291.
- 14 Ashkinazi & Rimma, *PCT Int Appl*, WO 9925718; *Chem Abstr*, 130, **1999**, 352280.
- 15 De Clercq E, Debyser, Plymers W, Pannecouque C, Witvrouw & Myriam, *PCT Int Appl*, WO 2002003971; *Chem Abstr*, 136, **2002**, 96025.
- 16 Kvasha V V, Fedorova E V, Studentsov E P, Moskvin A V & Ivin B A, *Russian J Gen Chemistry*, 74(6), **2004**, 949.
- 17 Bredereak H, Simchen G, Wagner H & Jurters, *Leibigs Ann Chem*, 73, **1972**, 76.
- 18 Wipfier H, Siegler E, Woffbeis O, Naturforsch Z & Anorg B, *Chem Org Chem*, 33(B), **1978**, 1016.
- 19 Zayed E & Kalifa M, *Rev Port Quim*, 24(1-4), **1982**, 133.
- 20 (a) Colloghan C N O & Conalty M L, *Proc Irish Acad*, 13B, **1983**, 214.
(b) Shofi N, Kondo Y & Takemoto T, *Chem Pharm Bull*, 21(2), **1973**, 2639.
- 21 (a) Junek H & Aigner H, *Chem Ber*, 106(3), **1973**, 914.
(b) Smissmann E, Robinson R A & Matursak, A J, *J Org Chem*, 35(11), **1970**, 3824.
- 22 Kidwai M, *Pure Appl Chem*, 73, **2001**, 147.
- 23 (a) Kidwai M, Sapra P, Bhushan K R & Misra P, *Synthesis*, 10, **2001**, 1590.
(b) Kidwai M, Saxena S, Mohan R & Venkataraman R, *J Chem Soc, Perkin Trans 1*, **2002**, 1845.
(c) Kidwai M, Rastogi S & Venkataraman R, *Bull Chem Soc Jpn*, 76, **2003**, 203.
- 24 Bigi F, Chesini L, Maggi R & Sartori G E, *J Org Chem*, 64, **1999**, 1033.
- 25 Aluminium oxide neutral, Brokmann I (Aldrich Chemical Company, Cat No 19, 977-4), ~ 150 mesh, 58 Å, surface area 155 m²/g.
- 26 Bram G, Loupy A & Majdoub M, *Tetrahedron*, 46, **1990**, 5167.
- 27 Aluminium oxide acidic, Brokmann I (CAMAG 506-C-1), ~ 150 mesh, 58 Å, surface area 155 m²/g.
- 28 Montmorillonite K10: K Catalyst (69866 Fluka), surface area 200 ± 20 m²/g.